Experimental investigation of fatigue crack induced energy dissipation under mixed mode loading
نویسندگان
چکیده
منابع مشابه
Finite Element Model of Crack Growth under Mixed Mode Loading
In this paper, in order to predict the crack growth trajectory and to evaluate the SIF under mixed modes (I & II), one proposes a new finite element program for crack growth using the source code written in FORTRAN. The fin ite element mesh is generated using an advancing front method, where the generation of the background mesh and the construction of singular elements are also added to this d...
متن کاملExperimental investigation of mode I fracture energy of adhesively bonded joints under impact loading conditions
Background Recently, the automotive industry has paid attention to multi-material structures to reduce CO2 emission. Hence, the use of light-weight and high-strength materials such as Al–Mg alloys, high-tensile-strength steel and carbon-fiber-reinforced plastics (CFRP) is essential to lighten the vehicle weight [1]. Joining methods for these dissimilar materials are the key to apply them into t...
متن کاملStrip yield modelling of fatigue crack under variable amplitude loading
The results from ‘strip yield’ approach of the FASTRAN type models of plasticity induced crack closure effects of fatigue cracks subjected to variable amplitude loadings are presented. The strip yield results are compared with authors’ finite element (FE) and experimental results. It has been observed that the strip yield model is seen to be fundamentally limited by choice of α (constraint fact...
متن کاملModelling Mode I Crack Initiation in Composites under Fatigue Loading Using Interface Elements
Modelling quasi-static crack growth with interface elements is a widely accepted technique [1-2]. Interface elements are inserted into the finite element mesh along possible crack paths. The interface elements are characterised by a traction-displacement curve. When a specific maximum stress is reached, the interface element undergoes a softening process until the critical fracture energy has b...
متن کاملThreshold stress intensity factor and crack growth rate prediction under mixed-mode loading
A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Structural Integrity
سال: 2020
ISSN: 2452-3216
DOI: 10.1016/j.prostr.2020.11.007